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ABSTRACT

Mitigating the heat stress via a derivative policy is a vital financial option for agricultural producers
and other business sectors to strategically adapt to the climate change scenario. This study has provided an
approach to identifying heat stress events and pricing the heat stress weather derivative due to persistent
days of high surface air temperature (SAT). Cooling degree days (CDD) are used as the weather index for
trade. In this study, a call-option model was used as an example for calculating the price of the index.
Two heat stress indices were developed to describe the severity and physical impact of heat waves. The
daily Global Historical Climatology Network (GHCN-D) SAT data from 1901 to 2007 from the southern
California, USA, were used. A major California heat wave that occurred 20–25 October 1965 was studied.
The derivative price was calculated based on the call-option model for both long-term station data and
the interpolated grid point data at a regular 0.1±£0.1± latitude–longitude grid. The resulting comparison
indicates that (a) the interpolated data can be used as reliable proxy to price the CDD and (b) a normal
distribution model cannot always be used to reliably calculate the CDD price. In conclusion, the data,
models, and procedures described in this study have potential application in hedging agricultural and other
risks.
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1. Introduction

Heat stress is an important factor of agricultural
and economic loss. Under the scenario of global cli-
mate change and water shortage, the drought and heat
stress impact to the economic loss is likely to increase
in the future. The impact of climate on rural income in
developing countries has been quantified using satellite
remote-sensing data (Mendelsohn et al., 2007). Miti-
gating the heat stress by adopting appropriate insur-
ance or derivative policies is a vital financial option
for various sectors (Jewson and Brix, 2005; Dorfleit-
ner and Wimmer, 2010). The purpose of this study
was to develop an approach to assessing the strength
of a heat wave and to pricing the heat stress derivative
based on degree days. This approach can be applied to
agriculture, energy, health, and other business sectors.

The impact of heat stress is inhomogeneous around
the world. Population increase and agricultural ex-

pansion are two major anthropogenic factors. The
population increase in southern California, USA, has
been rapid. The population increased from 14.6 mil-
lion in 1990 to 16.5 million in 2000, representing 13%
growth in the 1990s in addition to 26% growth in the
1980s. This population growth has created unprece-
dented challenges and opportunities to California’s so-
ciety and economy (SCAG, 2008). Innovative methods
of coping with the impact of heat stress on agriculture,
economic development, water supply, and human life
need to be developed. These methods need to con-
sider optimal electrical power supplies, water sources,
and other heat mitigation aspects. Sustainable busi-
ness plans call for risk hedging and assessments based
on historic weather data (Kramps, 2008) and climatic
projections (Miller et al., 2008).

Until recently, insurance was the main tool pro-
viding economic protection against extreme weather
conditions. However, insurance is a direct damage re-
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covery tool, and the corresponding risk management
is based on the damage assessment. Thus, insurance
typically covers only high-risk events that occur with
relatively low probabilities, such as extreme drought,
flooding, and tornados. It does not provide protection
against decreasing business demands due to unfavor-
able weather conditions. These low-risk and relatively
high-probability events can cause significant and unfa-
vorable revenue fluctuations for many businesses and
industries, as well as agriculture producers. Weather
derivatives can be used as a tool to reduce the volatility
of business revenue. A weather derivative product is
based on a meteorological index, such as extreme tem-
perature, extreme precipitation, extreme wind gust,
and cooling degree day (CDD). The index can be used
in the market in a way similar to stocks or other com-
modity indices. The traded product is the weather
derivative, which is used to hedge weather risks.

This study focused on risk hedging of heat waves in
the state of California, USA. Heat stress index (HSI)
and modified heat stress index (mHSI) were used as
the severity indicators of a heat wave. The heat indices
used on the current weather derivative market are
CDD and HDD (heating degree day). The heat stress
indices, including HSI and mHSI, have not been used
in the market yet, although they are sensitive heat
stress indicators and have market potential. There-
fore, in this study we used CDD as the hedging index,
and it was priced. The CDD is the positive diÆerence
between a hot day’s mean temperature and a base-
line temperature, usually set at 18±C. The CDD is a
clear measure of the warmness of a day with respect
to a baseline temperature. Therefore, CDD is a com-
monly used commercial trade index that reflects the
agricultural water usage in semiarid areas like Califor-
nia or that reflects the energy demand for air condi-
tioning. We used long-term airport weather station
observations as benchmark data; they are more reli-
able and of higher quality relative to other short-term
station measurements. We identified the heat waves
observed at the international airports of Los Angeles,
San Diego, and San Francisco since 1939, and we in-
vestigated the impact of the heat in each area. We
determined a method for calculating the premiums of
the weather derivative pricing based on the histori-
cal weather data and based on a theoretical model.
In addition, for applicability of our weather deriva-
tive pricing, we also interpolated the observation data
to a 0.1±£0.1± latitude–longitude grid across Califor-
nia, which helped us to identify the spatial impact of
the heat waves. Our study was based on the daily
observation data of maximum and minimum tempera-
tures acquired from the Global Historical Climatology
Network-Daily (GHCN-D) (Durre et al., 2008) for the

period of 1 January 1901 to 31 December 2007.
The rest of the paper is arranged as follows. Sec-

tion 2 describes data and California heat waves; sec-
tion 3 describes the calculation method for weather
derivative premiums and its results; and section 4
presents discussion and conclusions.

2. Data

The GHCN-D data were used in this study (Peter-
son and Vose, 1997; Durre et al., 2008). This dataset,
compiled by the US National Climatic Data Center,
is the most comprehensive global daily station data of
daily maximum temperature, minimum temperature,
precipitation, snowfall, and snow depth. It includes
observation reports from more than 40 000 stations
around the world. The history of the number of the
GHCN-D stations in California is shown in Fig. 1. The
GHCN-D record for California started in 1877. The
station is located in Sacramento (38.58±N, 121.15 ±W)
and is still operating. The number of operating obser-
vation stations in California reached its maximum be-
tween 1960 and 1970, with 422 temperature stations
in 1970 and 674 precipitation stations in 1960. The
number of stations has since declined to the current
level of ª300 for temperature and ª400 for precipita-
tion. For our weather-derivative pricing, we used the
observation data from in the interval 1 January 1901
to 31 December 2007.

In Fig. 2, the spatial distribution of the stations
reporting temperature is shown for 4 diÆerent years

Fig. 1. History of the total number of temperature and
precipitation stations in California from the GHCN-D
dataset between 1877 and 2007. The dashed line indi-
cates the number of surface air temperature stations and
the solid line is for the number of precipitation stations.
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Fig. 2. The spatial distribution of the GHCN-D temperature weather stations in California in
diÆerent years.

(i.e., 1901, 1930, 1965, and 2000), varying from the
time of sparse coverage to the time of dense coverage.
Each the station marked in the figure reported tem-
perature data at least once in the given year. The San
Francisco area has been well covered since 1901. The
southeastern desert areas were not covered in the ear-
lier years of this period. Although the year 2000 had
ª100 fewer stations than 1965, the spatial coverage of
these 2 years was about the same. Some observations
at redundant stations in the San Francisco and Los
Angeles areas were discontinued.

The heat eÆect on people and crops during a heat
wave is often a composite factor of surface air temper-
ature (SAT) and relative humidity (RH) that can be
measured by a heat index (HI), a nonlinear regression
of these two basic factors (Steadman, 1979). For Cal-
ifornia, humidity is usually not a large factor during a
summer heat wave because the California summer is

very dry and has little precipitation. In Southern Cal-
ifornia, total precipitation during the 6 months of the
dry season (May–October) is characteristically <15%
of the annual total. In particular, humidity is low in
the inland areas; it can be <15% during the hottest
hours of a day in the summer in many inland areas,
and it is generally <40% in almost all the inland areas
(GaÆen and Ross, 1999). Although the humidity can
be high in the afternoon in the coastal areas, the tem-
perature is also lower in these areas. Thus, humidity
does not play a major role in California heat-wave im-
pact, and we used only temperature data to identify
the heat waves from 1901 to 2007.

The World Meteorology Organization (WMO) de-
fines a heat wave as a period of >5 consecutive days
where the daily maximum temperature T

max

exceeds
its climatology T

max,clim by 5±C (Frich et al., 2002).
The daily climatology was calculated as the 30-year
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mean daily maximum temperature T

max

during 1961–
1990. This definition is diÆerent than that used by
the US National Weather Service, which defines a heat
wave as an event of maximum temperature >40.6±C
(or 105±F) and minimum temperature > 26.7±C (or
80±F) for 2 consecutive days. The problem with fixed
thresholds like these is that some parts of the United
States frequently exceed the thresholds, but damage
does not occur because both human and agriculture
have already adapted to the local climate. Hence the
severity and impact of a heat wave can be measured
by a heat stress index (HSI)

HSI =
KX

k=1

[T
max

(k)° T

max,clim(k)] ,(1)

where each term in the sum is the daily maximum
temperature anomaly and is hence >5, K is the total
number of days of a heat wave and >5, and k is the
count for the kth day into a heat wave. The heat waves
detected at Los Angeles International Airport (LAX)
and San Diego Lindbergh Field International Airport
(SAN) are listed in Table 1. Although the distance
between LAX and SAN is only 200 km, LAX experi-
enced eight heat waves, while San Diego experienced
only five in the same period, 1965–2007. This may be
due to the fact that SAN is very close to ocean, only
a few hundred meters from the San Diego Bay. The
maximum HSI was 98.5±C for the LAX’s 19 Septem-
ber 1978 (19.09.1978) heat wave, and was 88.5±C for
SAN’s 20 October 1965 (20.10.1965) heat wave. The
more recent heat waves in northern California reported
at the San Francisco International Airport (SFO) (e.g.,
1997, 2004, and 2006) were not recorded at LAX and
SAN. However, due to the low temperature of the SFO
climatology in the summer, the impact was weak.

The analysis given by Steadman (1979) showed
that heat impact can be a nonlinear function. Here
we introduce a modified heat stress index (mHSI) de-
fined by the following formula:

mHSI =
KX

k=1

T

max

(k)[T
max

(k)° T

max,clim(k)] .(2)

This index reflects the nonlinearity of the impact of
a heat wave to society, agriculture, business, and in-
dustry. The values of both HSI and mHSI for the
LAX and SAN heat waves are shown in Table 1. The
spatially impacted area of the large-scale 20–25 Oc-
tober 1965 heat wave is shown in Fig. 3. This was
among the strongest heat waves in California since
1901 (Gershunov et al., 2009), impacting nearly 0.3
million km2, ª70% of the entire state of California.
The HSI, mHSI, and the heat wave coverage data were
helpful in determining the severity of the historic heat
waves and the need for heat-stress risk management
policies. During this 1965 heat wave, San Diego had an
extremely high mHSI value of 2608.9. On 15 Septem-
ber 1939 (15.09.1939), and another heat wave was even
stronger, with mHSI = 2278. This was caused by both
high SAT and high SAT anomalies, because September
is usually the hottest monthly in San Diego.

3. Method for pricing the CDD call option

HSI and mHSI can be used to measure the severity
of heat waves, and they may provide information on
the impact of the heat waves to agriculture and indus-
try. However, these two indices have not been used
in the market yet. A hedging market can only be ex-
plored for an index that is currently traded, which is
CDD in our case.

Table 1. Heat waves at LAX and SAN airports.

Duration HSI value mHSI value
Start Date (dd.mm.yyyy) (unitsğd) (units: ±C d°1) (unitsğ±C ±C d)

Los Angeles 20.10.1965 7 78.3 1829.8
25.09.1970 6 52.0 1280.5
23.06.1976 6 52.2 1213.5
19.09.1978 10 98.5 2465.1
13.09.1979 7 65.3 1576.3
13.06.1981 6 74.3 16412.0
04.09.1984 6 53.4 1328.1
12.08.1994 6 47.7 1166.5

San Diego 15.09.1939 9 92.1 2278.0
10.10.1939 6 49.1 1164.0
20.10.1965 10 88.5 2068.9
01.11.1976 8 70.0 1556.5
17.06.1978 8 52.2 1170.8
20.09.1978 7 60.1 1378.9
14.09.1979 6 54.8 1347.3
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Fig. 3. Impacted area of the heat wave during 20–25 Oc-
tober 1965. The color legend indicates the mHSI values
of the heat wave. The map is generated from the mHSI
values calculated at every grid point.

The mathematical formula for calculating CDD for
a day i at a specific location is

CDDi =
Ω

Ti ° 18 if Ti > 18
0 else 0 , (3)

where

Ti =
Ti,max

+ Ti,min

2
(4)

is defined as the daily mean temperature, and Ti,max

and Ti,min

are this location’s daily maximum and mini-
mum near surface air temperature measured in degrees
Celsius.

The index values are defined as the CDD sum of
all degree days over a period of N days. The existing
CDD contracts traded on market are usually for the
summer season from May to September. The seasonal
CDD index is the sum of the monthly CDD values [see
Eqs. (6.5) and (6.6) in Kramps (2008)].

An option is a financial instrument that gives the
right, but not the obligation, to engage in a future
transaction on some underlying security. The pur-
chaser of an option pays an up-front cash premium to
the seller for price protection. For the weather deriva-
tive considered here, at the end date of the contract,
the purchaser receives a certain amount of money,
called payoÆ, if the weather index exceed the strike
value in the contract period. Two options are con-
sidered here: call option and put option. The call
option allows the buyer the right to buy a commodity,

and the put option allows the buyer the right to sell a
commodity.

We use x to denote the CDD. A call-option model
for the payoÆ p(x) may be written as follows:

p(x) =

8
<

:

0 if x < K

D(x°K) if K 6 x 6 L

L

$

if x > L

, (5)

where x is the seasonal CDD value, K is the strike at
which the payoÆ starts from the option seller, D is the
tick that gives the proportion of the payoÆ increase
as the unfavorable weather condition, measured by x,
gets worse, and the payoÆ is capped by L

$

when the
bad weather condition exceeds a threshold: x > L

$

.
This model is shown in Fig. 4. The buyer pays a
premium to the seller at the beginning of a contract.
At the end of the contract period, the buyer receives
zero payoÆ for favorable weather or maximum payoÆ
L

$

for a disastrous weather condition exceeding a cer-
tain level. Thus, the call option provides a mechanism
of revenue protection to the buyer against unfavorable
or even a disastrous weather. The CDD call option
may be used by crop producers to protect their in-
come against loss of crops due to excessive heat or by
utility companies to protect their power transmission
facility from damage costs caused by extremely high
and suddenly imposed load for additional cooling. The
buyer may receive some revenue from a significant loss
due to bad weather. The seller may profit from the
premium minus the minor payoÆ when the weather is
good or insignificantly bad. Thus, the weather risk is
hedged.

To provide a hypothetical illustration, we have cho-
sen the example of a revenue protection policy pur-
chased by an organic vegetable producer against loss
due to excessive heat. The essentials of a sample CDD
call option contract are given in Table 2. The crops
in our illustration were hypothetically grown across
the eastern area of Los Angeles, and the LAX airport
temperature was used as a good proxy of surface air

Fig. 4. A call option model. Here, K is the strike, and
L$ is the maximum payoÆ.
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Table 2. Format of a CDD call option contract.

CDD Call Option

Current Time 28 February 2008
Location Los Angeles LAX Airport
WMO Station ID 42500045114
Long Position Organic Veggie Inc.
Short Position ABC Bank
Accumulation Period 1 May 2008 to 30 September 2008
Underlying Seasonal CDD
Variable Daily surface air mean temperature measured in tenth of degree Celsius
Tick Size US$100.00
Strike Level 332±C
Actual Level 359±C

temperature. The LAX historical data from 1945 to
2007 were applied. For the LAX data from May to
September, the mean and standard deviation of CDD
calculated for 63 years of data were 305±C and 107±C,
respectively (Kramps, 2008). The agreement was set
at 25% above the mean, of 332±C. The 2008 summer
was hotter than normal, and the actual 2008 May–
September CDD was 359±C. Thus, the Organic Veg-
gie Company received a payoÆ of $2700, which is $
(359–332) £ 100 at the end of the contract.

The parameters of the above call-option model
should be optimized according to the historic data of
both weather and economic loss in order for the market
to be sustainable. However, with reasonably assumed
parameters from experience, the fair price can be de-
rived depending on the model parameters. Thus, the
call options traded at diÆerent markets may use diÆer-
ent parameters, depending on the needs of the dealer
and the buyer. The call-option model with specific
parameters can become proprietary to its developer or
its dealer.

But how much should the Organic Veggie Com-
pany pay for the premium at the time of signing of
the contract? To price the call option, the premium is
determined according to the historic data using the fol-
lowing procedures. The fair premium is the expected
payoÆ according to the historic data. The seller may
add a profit margin and an overhead expense on the
fair premium. We chose the LAX station as our ex-
ample. The station is located at 33.93±N, 118.4±W,
and its WMO ID is 42500045114. The seasonal CDD
was calculated from 1945 to 2007 for the period of 1
May to 30 September. The top two panels of Fig. 5
show the historic values of CDD, the strike level, and
the payoÆ amount. For a given year, when CDD value
is above the strike level, a payoÆ will occur. Thus,
every black dot above the blue line corresponds to the
red line. The height of the red line reflects the pay-
oÆ amount. The mean of the payoÆs was US$32.29
according to this dataset, and this is the fair pre-

mium. The actual premium was 20% of the payoÆ
standard deviation above this value or at another per-
centage higher than this value because of seller’s profit
and overhead expenses. The payoÆ standard deviation
from this dataset was US$59.28. If the overhead is 20%
of standard deviation, then the actual premium would
be US$44.15 (=US$32.29+US$59.28£20%).

The bottom panels of Fig. 5 show the histograms
of the payoÆ. Using this histogram we also calculated
the expected value, which was approximately equal to
the mean payoÆ described previously:

P =
MX

m=1

q(m)f(m) . (6)

Here, m is the index number of the bin on the hori-
zontal axis of the lower panels in Fig. 5, q(m) is the
payoÆ for the bin m, f(m) is the percentage frequency
of the bin m, and M is the total number of bins (i.e.,
10) in Fig. 5.

The standard deviation can also be calculated us-
ing this moment method. This calculation approach
provides a way to calculate the premium from an as-
sumed probability distribution model when the his-
toric data are not available (see, e.g., Fig. 6).

It is desirable for both seller and buyer to have a
long, complete data stream and spatially well-covered
data to have a reliable assessment of the risk and accu-
rate estimate of the premium. However, neither every
location was covered by a station, nor did every station
provide complete data from its beginning to its end.
Thus, it was very important to interpolate the data
onto a dense grid with reasonable accuracy (Shen et
al., 2001). The California station data were interpo-
lated onto a 0.1±£0.1± latitude–longitude grid using
the inverse distance weighting method with a length
scale (Shen et al., 2001; Kramps, 2008). Thus, interpo-
lated data were used for the fair premium calculation.
We interpolated data for the period 1 January 1901 to
31 December 2007. The CDD and payoÆs calculated
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Fig. 5. Top-left panel: LAX CDD and payoÆ from station data. The black dots are the seasonal
CDDs of the LAX station from 1945 to 2007. The horizontal blue line is the strike level. The
dots are the historical CDD values whose ticks on the left hand side. The vertical red lines are the
payoÆ values whose ticks are on the right hand side. Top-right panel: LAX CDD and payoÆ from
the gridded data. Bottom-left panel: Histogram of payoÆs calculated from the LAX station data.
Bottom-right panel: Histogram of payoÆs calculated from the LAX grid data.

Fig. 6. Comparison of the payment CDF based on a
CDD normal distribution models (thin dot-broken line),
and the payment CDFs calculated from LAX station data
(thick solid line) and gridded data (thin solid line).

based on the interpolated LAX data are shown in the
top-right panel of Fig. 5. Based on the gridded data,
the mean and standard deviation of the CDD were
310±Cand 124±C, respectively. The mean and stan-
dard deviations of the payoÆs became US$33.79 and
US$63.32, respectively. The actual premium was then
US$46.45. This was slightly higher than the station
data result of US$44.15.

The two premiums above appear low, considering
the payoÆ in Fig. 5, because of the climate change to a
warmer phase (Shen et al., 2005; Jewson and Penzer,
2006). The fair premium was computed when con-
sidering climate conditions in the cold phases in the
1910s and/or 1960s. Thus, the actual premium should
have been much higher than the two calculated previ-
ously. The higher probability of summer hot days in
the future years should have been taken into account.
There are many ways to incorporate this information.
In this study we developed a way that uses a climate
distribution model and considers a climate shift. If
climate change into a warmer phase is considered, a
regression according to time may be used to increase
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this premium as time progresses.
For this initial study, we assumed a normal dis-

tribution of the seasonal CDD, and we calculated the
payoÆs according to the normal distribution model.
Then we compared the model results with the re-
sults from the station data and the grid data. The
CDD normal distribution is given by Nµ,æ(x), where
x stands for CDD values with the mean µ and the stan-
dard deviation æ is being estimated from the station
data. The cumulative distribution function (CDF) of
the payoÆ is

F (p) =

8
>>><

>>>:

0 if p < 0

Cµ,æ(K + p/D) if 0 6 p < L

$

1 if p > L

$

. (7)

Here Cµ,æ(x) is the cumulative distribution function
for the normal distribution. In this formula, all the
parameters are computed from data and are the same
as those used previously. When the historic data are
unavailable, the values for these parameters can be as-
sumed based on similar climate and crop conditions.
Figure 6 shows a comparison of the CDF from the
model and from the station and gridded data. The
good fit of the three curves provides confidence in the
model for the LAX station. The accumulated pay-
oÆ probabilities have noticeable diÆerences for smaller
payoÆs, where the normal model CDF is below the
CDF based on the historic weather data. The diÆer-
ence becomes smaller when the payoÆ becomes larger.

Another measure of the diÆerence can be made us-
ing PDF (probability density function) rather than
CDF. That may better show the diÆerences at the
right tail. However, the financial market cares more
about the CDF results, which motivates users to track
the CDF diÆerences.

The normal distribution model was a trial model
for this initial study and may not work for every lo-
cation. Our numerical tests show a good fit for San
Diego (SAN) airport. However, the fit for San Fran-
cisco SFO airport was not as good. The lesser fit may
be due to the lower temperature climatology at SFO
(Kramps, 2008). Whether a nonparametric distribu-
tion model for pricing the CDD or even mHSI can be
developed should be investigated in the future.

4. Conclusions and discussion

We used HSI and mHSI to quantify the severity of
a heat wave and developed an approach to price the
CDD weather derivative that hedges the risks due to
heat stress during the period of persistent abnormally
high surface air temperature. A call-option model was
used as an example of calculating the index price. The

daily Global Historical Climatology Network (GHCN-
D) SAT data from 1901 to 2007 were used in the fo-
cused study region of California, the United States.
A major California heat wave of 20–25 October 1965
was revealed and was used to demonstrate our the-
ory. The derivative price was calculated based on the
call option model for both long-term station data and
the interpolated grid point data at a regular 0.1±£0.1±
latitude–longitude grid. The resulting comparison in-
dicates that (a) the interpolated data can be used as
reliable proxy to price the CDD, and (b) a normal dis-
tribution model cannot always be used to reliably cal-
culate the CDD price. In conclusion, the data, models,
and procedures developed in this study have potential
applications in hedging agricultural and other risks.

Seasonal CDD is a commonly used trade tool and
is priced here for California, USA. However, a short
time period CDD contract can be designed only for
the heat-wave period and price the CDD derivative
can be calculated accordingly.

The GHCN dataset is valuable in weather risk
hedging due to many factors because it has a long
history and global coverage. The GHCN data may
be used to calculate weather derivatives over regions
other than California or the United States, although
the data coverage in other regions may not be as good.
An analytic model with some station calibration and
data interpolation may be beneficial.

The physiological mechanisms of the nonlinear in-
dex mHSI or even linear index HSI have not yet been
investigated. A comprehensive study of plant phys-
iological data, temperature data, and humidity data
may be helpful to justify the applications of mHSI and
to create a market for the mHSI trade, and hence to
develop a price system for mHSI.

Many weather risks and option models can be de-
veloped from the station data, gridded data, and as-
sumed models. Future studies may generate more ex-
amples over various regions around the world for prac-
tical applications. It may be worthwhile to develop
a pilot market application for this type of weather
derivative for the emerging integrated agricultural
business for the northeastern China to safeguard the
stability of the region’s agricultural production (Dor-
fleitner and Wimmer, 2010).
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